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Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. Moreover, since
the release of the pix2pix software associated with this
paper, hundreds of twitter users have posted their own artis-
tic experiments using our system. As a community, we no
longer hand-engineer our mapping functions, and this work
suggests we can achieve reasonable results without hand-
engineering our loss functions either.

1. Introduction

Many problems in image processing, computer graphics,
and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a con-

cept may be expressed in either English or French, a scene
may be rendered as an RGB image, a gradient field, an edge
map, a semantic label map, etc. In analogy to automatic
language translation, we define automatic image-to-image

translation as the problem of translating one possible rep-
resentation of a scene into another, given sufficient train-
ing data (see Figure 1). Traditionally, each of these tasks
has been tackled with separate, special-purpose machinery
(e.g., [14, 23, 18, 8, 10, 50, 30, 36, 16, 55, 58]), despite
the fact that the setting is always the same: predict pixels
from pixels. Our goal in this paper is to develop a common
framework for all these problems.

The community has already taken significant steps in this
direction, with convolutional neural nets (CNNs) becoming
the common workhorse behind a wide variety of image pre-
diction problems. CNNs learn to minimize a loss function –
an objective that scores the quality of results – and although
the learning process is automatic, a lot of manual effort still
goes into designing effective losses. In other words, we still
have to tell the CNN what we wish it to minimize. But, just
like King Midas, we must be careful what we wish for! If
we take a naive approach, and ask the CNN to minimize
Euclidean distance between predicted and ground truth pix-
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Burgos et al., PMB, 2017; Yang et al., IEEE TMI, 2018; Qu et al., MedIA, 2020; Lee et al., PMB, 2019
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CNNs for many applications
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CNNs for image generation
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Training autoencoders
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Image translation with conditional GANs
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Dealing with unpaired data

Wolterink et al., SASHIMI, 2017

2 J.M. Wolterink et al.
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Fig. 1: Left When training with paired data, MR and CT slices that are simul-
taneously provided to the network correspond to the same patient at the same
anatomical location. Right When training with unpaired data, MR and CT slices
that are simultaneously provided to the network belong to di↵erent patients at
di↵erent locations in the brain.

GAN, the synthesis CNN competes with a discriminator CNN that aims to dis-
tinguish synthetic images from real CT images. The discriminator CNN provides
feedback to the synthesis CNN based on the overall quality of the synthesized
CT images.

Although the GAN method by Nie et al. [9] addresses the issue of image
misalignment by incorporating an image-wise loss, it still contains a voxel-wise
loss component requiring a training set of paired MR and CT volumes. In prac-
tice, such a training set may be hard to obtain. Furthermore, given the scarcity
of training data, it may be beneficial to utilize additional MR or CT training
volumes from patients who were scanned for di↵erent purposes and who have
not necessarily been imaged using both modalities. The use of unpaired MR
and CT training data would relax many of the requirements of current deep
learning-based CT synthesis systems (Fig. 1).

Recently, methods have been proposed to train image-to-image translation
CNNs with unpaired natural images, namely DualGAN [11] and CycleGAN [12].
Like the methods proposed in [4,8,9], these CNNs translate an image from one
domain to another domain. Unlike these methods, the loss function during train-
ing depends solely on the overall quality of the synthesized image as determined
by an adversarial discriminator network. To prevent the synthesis CNN from
generating images that look real but bear little similarity to the input image,
cycle consistency is enforced. That is, an additional CNN is trained to translate
the synthesized image back to the original domain and the di↵erence between
this reconstructed image and the original image is added as a regularization term
during training.

Here, we use a CycleGAN model to synthesize brain CT images from brain
MR images. We show that training with pairs of spatially aligned MR and CT
images of the same patients is not necessary for deep learning-based CT synthe-
sis.

30 SASHIMI2017, 010, v2 (final): ’Deep MR to CT Synthesis using Unpaired Data’
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GANs

Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017
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Cycle GANs

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017
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MR-based synthetic CT generation using a deep CNN method

Han, Medical Physics, 2017

Sensation 16 scanner with tube voltage 120 kV, exposure
300 mAs, in-plane resolution 0.59 0.5 mm2, and slice thick-
ness of 1 mm.

Each patient’s MR/CT image pair was aligned rigidly
using a mutual information rigid registration algorithm, and
the CT was resampled to match the resolution and field of
view of the MR image. Each MR image was further corrected
for intensity non-uniformity using the N3 bias field correc-
tion algorithm.43 All MR images were then histogram-
matched to a randomly chosen template to help standardize
image intensities across different patients using the method
of Cox et al.44

To better evaluate the accuracy of sCT estimation, a binary
head mask was automatically derived from each MR image
to separate the head region from the non-anatomical, back-
ground region of the image. This was achieved by applying
the Otsu auto-thresholding method45 on each MR image. A
morphological closing operator was employed to fill in gaps
around the nasal cavities and the ear canals, the largest con-
nected component of which then produced the head mask.
Figs. 1(a) and 1(b) show one example MR image and the
head mask computed.

It should be noted that every patient had a stereotactic head
frame that was used in conjunction with Gamma Knife! treat-
ment. The head frame is totally invisible in the MR image but
only present in the CT image. Its position also differs in each
patient. It is infeasible to expect that a model based on the MR
image alone can reliably predict the head frame. To avoid any
adverse impact of the head frame on model training, we artifi-
cially removed the head frame from each CT image by setting
all voxels outside the previously computed head mask region
to a HU of !1000. Figs. 1(c) and 1(d) show axial views of a
CT image before and after the head frame was removed. The
head frame caused streaking artifacts in the CT image of every
patient, as can be seen in these figures. It should be noted that
these random artifacts in the “ground truth” CT images inevi-
tably cause some over-estimation of the error when evaluating
the accuracy of the predicted sCTs.

2.B. Deep CNN (DCNN) model for sCT estimation

As mentioned in the introduction section, we design a 2D
DCNN model in this work to directly learn a mapping

function to convert a 2D MR slice to its corresponding 2D
CT. The model can be trained by collecting all 2D MR slices
with corresponding 2D CT slices from each training subject’s
3D MR/CT pair. Once the model is trained, it can be applied
on a new MR image slice-by-slice and the results can be
assembled to get the final 3D sCT. Directly training a full-3D
DCNN model is infeasible due to limitations in GPU memory
of commodity GPU cards and due to limited training data in
this study. It may also be unnecessary since a 2D slice already
contains rich contextual information.

Many different CNN models have been proposed in the
computer vision literature, and their architectures can be very
flexible. In this work, we build upon recent developments in
semantic image segmentation where a deep CNN model can
be trained from end-to-end to directly produce a dense label
map for object segmentation in a 2D image.39,46–48 In partic-
ular, we adopt and modify from the U-net architecture that
was proposed in Ronneberger et al.,39 and the resulting net-
work architecture is shown in Fig. 2.

(a) (b) (c) (d)

FIG. 1. Illustration of data preprocessing. A 2D axial slice is shown in each subfigure for: (a) the MR image; (b) the computed head mask; (c) the original CT
image; (d) the CT image with the stereotactic head frame masked out.

FIG. 2. Overall architecture of the proposed sCT DCNN model. Each blue
box represents a (3 9 3) convolutional layer (with a rectified linear unit as
the activation function). Each red box denotes a max-pooling layer, and each
purple box denotes an un-pooling layer. Each white box denotes a copying
layer. The 2D image size and the depth (number of channels) of the feature
map from each convolution layer are provided at the top of each blue box.
The green box denotes the final 1 9 1 convolution layer that generates the
output sCT prediction.

Medical Physics, 44 (4), April 2017
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corresponding CT images. Evaluation results showed that the
DCNN method offered significantly better accuracy than an
atlas-based method with patch refinement and fusion. This
result is expected since the atlas-based method relies on patch
comparison to find similar atlas candidates, as also common
in other atlas- or patch-based methods proposed in the

literature. A small, local patch has limited image information
and using raw image intensities of a patch as features may
suffer from large redundancy in the data and reduce the dis-
crimination power. On the contrary, the DCNN model auto-
matically learns a hierarchy of image features at different
scales and complexity from a full image slice.

MR sCT Real CT Difference Map

FIG. 4. Qualitative comparison of sCTs and real CT for subject #5. The image type that each column represents is indicated at the bottom of the corresponding
column. First column: MR; second column: sCTs (rows 1, 3, and 5 show the DCNN results, and rows 2, 4, and 6 show the atlas-based results); third column: real
CT; fourth column: difference maps (rows 1, 3, and 5 correspond to the DCNN results, and rows 2, 4, and 6 correspond to the atlas-based results). The color bar
is associated with the difference maps. First and second rows: axial slices; third and fourth rows: coronal slices; fifth and sixth rows: sagittal slices.
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Medical Image Synthesis with Context-Aware GANs

Nie et al., MICCAI, 2017
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Fig. 2. Architecture used in the Generative Adversarial setting for estimation of
synthetic CT image.

magnitudes of the gradients between the ground-truth CT image and the esti-
mated CT image. In this way, the estimated CT image will try to keep the
zones with strong gradients (i.e., edges) for an effective compensation of the L2
reconstruction term. This can be approximated as finite difference during the
implementation. Finally, the total loss used for training the generator G can be
defined as the weighted sum of all the terms as shown in Eq. 3.

L (X,Y ) = λ1Lbce(D(G(X)), 1) + λ2‖Y −G(X)‖22 + λ3Lgdl (X,Y ) (3)

The training is performed in an alternating fashion. First, D is updated by
taking a mini-batch of real CT data and a mini-batch of generated CT data
(the output of G). Then, G is updated by using another mini-batch of samples
including MRI and their corresponding CT. In Fig. 2, we also show the archi-
tecture of our generator network G which has the constraints mentioned above,
where the numbers indicate the filter sizes. This network takes as input an MR
image, and tries to generate the corresponding CT image. It has 8 stages con-
taining convolutions, Batch Normalization and ReLU operations with number
of filters 32, 32, 32, 64, 64, 64, 32, 32, respectively. The last layer only includes 1
convolutional filter, and its output is considered as the estimated CT. Regarding
the architecture, we avoid the use of pooling layers since they will reduce the
spatial resolution of feature maps. The Discriminator is a typical CNN architec-
ture including three stages of convolutions+Batch Normalization+ReLU+Max
Pooling, followed by one convolutional layer and three fully connected layers,
where the first two use ReLU as activation function, and the last one uses sig-
moid (whose output represents the likelihood that the input data is drawn from
the distribution of real CT). The filter size is 5 × 5 × 5, the numbers of filters
are 32, 64, 128 and 256 for the convolutional layers, and the numbers of output
nodes in the fully connected layers are 512, 128 and 1.

2.2 Auto-Context Model (ACM) for Refinement

Since our work is patch-based, the context information available for each train-
ing sample is limited inside of the patch. This affects the modeling capacity of

Medical Image Synthesis 423

MRI FCN GAN Ground Truth

Fig. 3. Visual comparison for impact of adversarial training. FCN means the case
without adversarial training, and GAN means the case with adversarial training.

Impact of Proposed GAN Model: To show the contribution of the pro-
posed GAN model, we conduct comparison experiments between the traditional
FCN (i.e., just the generator shown in Fig. 2) and the proposed GAN model.
The PSNR values are 24.7 and 25.9 for the traditional FCN and the proposed
approach, respectively. These results do not include the adoption of ACM. We
visualize results in Fig. 3, where the leftmost image is the input MRI and the
rightmost image is the ground-truth CT. We can clearly see that the gener-
ated data using the GAN approach has less artifacts than the traditional FCN
by estimating an image that is closer to the desired output quantitatively and
qualitatively.

Experimental Results for Both Datasets: Considering the trade-off between
the performance and the training time, we choose 2 iterations for ACM in our
experiments on both datasets [15]. To qualitatively compare the estimated CT
by different methods, we visualize the generated CT with the ground-truth CT
in Fig. 4 (left side). We can see that the proposed algorithm can better preserve
the continuity, coalition and smoothness in the prediction results, since it uses
image gradient difference constraints in the image patch as discussed in Sect. 2.1.

Fig. 4. Visual comparison of MR image, the estimated CT images by our method and
other competing methods, and the ground-truth CT image for the typical brain (left)
and pelvic (right) cases.
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Deep MR to CT Synthesis using Unpaired Data

Wolterink et al., SASHIMI, 2017
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Fig. 1: Left When training with paired data, MR and CT slices that are simul-
taneously provided to the network correspond to the same patient at the same
anatomical location. Right When training with unpaired data, MR and CT slices
that are simultaneously provided to the network belong to di↵erent patients at
di↵erent locations in the brain.

GAN, the synthesis CNN competes with a discriminator CNN that aims to dis-
tinguish synthetic images from real CT images. The discriminator CNN provides
feedback to the synthesis CNN based on the overall quality of the synthesized
CT images.

Although the GAN method by Nie et al. [9] addresses the issue of image
misalignment by incorporating an image-wise loss, it still contains a voxel-wise
loss component requiring a training set of paired MR and CT volumes. In prac-
tice, such a training set may be hard to obtain. Furthermore, given the scarcity
of training data, it may be beneficial to utilize additional MR or CT training
volumes from patients who were scanned for di↵erent purposes and who have
not necessarily been imaged using both modalities. The use of unpaired MR
and CT training data would relax many of the requirements of current deep
learning-based CT synthesis systems (Fig. 1).

Recently, methods have been proposed to train image-to-image translation
CNNs with unpaired natural images, namely DualGAN [11] and CycleGAN [12].
Like the methods proposed in [4,8,9], these CNNs translate an image from one
domain to another domain. Unlike these methods, the loss function during train-
ing depends solely on the overall quality of the synthesized image as determined
by an adversarial discriminator network. To prevent the synthesis CNN from
generating images that look real but bear little similarity to the input image,
cycle consistency is enforced. That is, an additional CNN is trained to translate
the synthesized image back to the original domain and the di↵erence between
this reconstructed image and the original image is added as a regularization term
during training.

Here, we use a CycleGAN model to synthesize brain CT images from brain
MR images. We show that training with pairs of spatially aligned MR and CT
images of the same patients is not necessary for deep learning-based CT synthe-
sis.

30 SASHIMI2017, 010, v2 (final): ’Deep MR to CT Synthesis using Unpaired Data’
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Deep MR to CT Synthesis using Unpaired Data

Wolterink et al., SASHIMI, 2017
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Fig. 3: The CycleGAN model consists of a forward cycle and a backward cycle.
In the forward cycle, a synthesis network SynCT is trained to translate an in-
put MR image IMR into a CT image, network SynMR is trained to translate
the resulting CT image back into an MR image that approximates the original
MR image, and DisCT discriminates between real and synthesized CT images.
In the backward cycle, SynMR synthesizes MR images from input CT images,
SynCT reconstructs the input CT image from the synthesized image, andDisMR

discriminates between real and synthesized MR images.
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Fig. 3: The CycleGAN model consists of a forward cycle and a backward cycle.
In the forward cycle, a synthesis network SynCT is trained to translate an in-
put MR image IMR into a CT image, network SynMR is trained to translate
the resulting CT image back into an MR image that approximates the original
MR image, and DisCT discriminates between real and synthesized CT images.
In the backward cycle, SynMR synthesizes MR images from input CT images,
SynCT reconstructs the input CT image from the synthesized image, andDisMR

discriminates between real and synthesized MR images.
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Fig. 6: From left to right Input MR image, synthesized CT image, reconstructed
MR image, and relative error between the input and reconstructed MR image.

the model trained using paired data. Qualitative analysis showed that CT im-
ages obtained by the model trained with unpaired data looked more realistic,
contained less artifacts and contained less blurring than those obtained by the
model trained with paired data. This was reflected in the quantitative analysis.
This could be due to misalignment between MR and CT images (Fig. 2), which
is ignored when training with unpaired data.

The results indicate that image synthesis CNNs can be trained using un-
aligned data. This could have implications for MR-only radiotherapy treatment
planning, but also for clinical applications where patients typically receive only
one scan of a single anatomical region. In such scenarios, paired data is scarce,
but there are many single acquisitions of di↵erent modalities. Possible applica-
tions are synthesis between MR images acquired at di↵erent field strengths [1],
or between CT images acquired at di↵erent dose levels [10].

Although the CycleGAN implementation used in the current study was de-
veloped for natural images, synthesis was successfully performed in 2D medical
images. In future work, we will investigate whether 3D information as present
in MR and CT images can further improve performance. Nonetheless, the cur-
rent results already showed that the synthesis network was able to e�ciently
translate structures with complex 3D appearance, such as vertebrae and bones.

The results in this study were obtained using a model that was trained with
MR and CT images of the same patients. These images were were rigidly reg-
istered to allow a voxel-wise comparison between synthesized CT and reference
CT images. We do not expect this registration step to influence training, as
training images were provided in a randomized unpaired way, making it unlikely
that both an MR image and its registered corresponding CT image were simul-
taneously shown to the GAN. In addition, images were randomly cropped, which
partially cancels the e↵ects of rigid registration. Nevertheless, using images of
the same patients in the MR set and the CT set may a↵ect training. The syn-
thesis networks could receive stronger feedback from the discriminator, which
would occasionally see the corresponding reference image. In future work, we
will extend the training set to investigate if we can similarly train the model
with MR and CT images of disjoint patient sets.
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Fig. 4: From left to right Input MR image, synthesized CT image, reference real
CT image, and absolute error between real and synthesized CT image.

Figure 4 shows an example MR input image, the synthesized CT image ob-
tained by the model and the corresponding reference CT image. The model has
learned to di↵erentiate between di↵erent structures with similar intensity values
in MR but not in CT, such as bone, ventricular fluid and air. The di↵erence image
shows the absolute error between the synthesized and real CT image. Di↵erences
are least pronounced in the soft brain tissue, and most in bone structures, such
as the eye socket, the vertebrae and the jaw. This may be partly due to the re-
duced image quality in the neck area and misalignment between the MR image
and the reference CT image. Table 1 shows a quantitative comparison between
real CT and synthesized CT images in the test set. MAE and PSNR values show
high consistency among the di↵erent test images.

To compare unpaired training with conventional paired training, an addi-
tional synthesis CNN with the same architecture as SynCT was trained using
paired MR and CT image slices. For this, we used the implementation of [5]
which, like [9], combines voxel-wise loss with adversarial feedback from a dis-
criminator network. This discriminator network had the same architecture as
DisCT . A paired t-test on the results in Table 1 showed that agreement with the
reference CT images was significantly lower (p < 0.05) for images obtained using
this model than for images obtained using the unpaired model. Fig. 5 shows a
visual comparison of results obtained with unpaired and paired training data.
The image obtained with paired training data is more blurry and contains a
high-intensity artifact in the neck.

During training, cycle consistency is explicitly imposed in both directions.
Hence, an MR image that is translated to the CT domain should be successfully
translated back to the MR domain. Fig. 6 shows an MR image, a synthesized
CT image and the reconstructed MR image. The di↵erence map shows that
although there are errors with respect to the original image, these are very small
and homogeneously distributed. Relative di↵erences are largest at the contour
of the head and in air, where intensity values are low. The reconstructed MR
image is remarkably similar to the original MR image.
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Fig. 4. One denoised T1w example from the testing set with 15% Rician noise. (a) Noise-free image, (b) noisy image, (c) BM4D, (d) PRI-NLM3D, (e) CNN3D, (f) RED-WGAN, 
(g) residual of BM4D, (h) residual of PRI-NLM3D, (i) residual of CNN3D, (j) residual of RED-WGAN. 
BM4D and PRI-NLM3D. For T1w images, the scores of RED-WGAN 
are close to CNN3D when the noise level is less than 7%. While the 
noise level increases, RED-WGAN yields a better performance than 
the other methods. For T2w images, the results of RED-WGAN are 
slightly better than all the other methods in most noise levels. In 

Table 3 , the differences are trivial, but the results of CNN3D are 
slightly better than those of RED-WGAN when the noise level is 
less than 11%. 

Figs. 4–6 provide a visual evaluation of the different re- 
sults for T1w, T2w and PDw brain images selected from the 
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Fig. 2. The architecture of the generator network G . 

Fig. 3. The structure of the discriminator network D . 
We randomly selected 110 T1-, T2- and PD-weighted brain 

image volumes from the Hammersmith dataset acquired from a 
Philips 3T scanner, which is a subset of the IXI dataset. One hun- 
dred image volumes were randomly selected as the training set, 
and the other 10 image volumes from the Hammersmith dataset 
formed the testing set. To evaluate the robustness of the proposed 
model for different scanners, 10 image volumes from the Guy’s 
Hospital dataset were also added into the testing set. In the train- 
ing set, we simulated noisy images by manually adding Rician 
noise to the images. It is well known that deep learning-based 
methods require a great deal of training samples, which is very 
difficult to satisfy, especially in clinics. In this study, to solve this 
problem, overlapping voxels were extracted from the samples to 
train the network. This method has been proven efficient in that 
perceptual differences can be better detected, and the number of 
samples significantly increases ( Dong et al., 2016 ; gan Xie et al., 
2012; Jain and Seung, 2008 ). A total of 50,0 0 0 voxels with of size 
32 × 32 × 6 are acquired via a fixed sliding step. 
3.1.2. Simulated data 

For simulated experiments, the BrainWeb database ( http:// 
brainweb.bic.mni.mcgill.ca/brainweb/ ) was used. This dataset con- 
tains T1-, T2- and PD-weighted brain images with a size of 
181 × 217 × 181 with 1 × 1 × 1 resolution. Meanwhile, the net- 
work trained by the clinical dataset from the Hammersmith Hos- 
pital dataset was used to validate the performance and robust- 
ness of our model. In the evaluation phase, we chose 6 continu- 
ous T1w slices from the middle position of the transverse plane 
as a test sample to evaluate and compare the performance of 
the methods. 
3.2. Training details 

To demonstrate the advantages obtained by our proposed net- 
work architecture, two different networks were trained, including 
RED-WGAN and CNN3D (RED-WGAN with only the generator part 

and the MSE loss), the latter of which can be seen as an improved 
version of the method proposed by Jiang et al. (2018) . 

Both networks mentioned above were trained on T1-, T2- 
and PD-weighted brain image volumes with specific noise lev- 
els. The parameters λ1 , λ2 and λ3 were experimentally set to 
1, 0.1 and 1e −3 , respectively, according to the suggestion in 
Ledig et al. (2017) and Yang et al. (2017a) . Following the sug- 
gestions in Goodfellow et al. (2014) , the penalty coefficient λ in 
Eq. (4) was set to 10. The Adam algorithm was used to opti- 
mize the loss function ( Kinga and Adam, 2015 ), and the parame- 
ters for the Adam optimizer were set to α = 5e − 5 , β1 = 0 . 5 , β2 = 
0 . 9 . Our codes for this work are available on https://github.com/ 
Deep- Imaging- Group/RED- WGAN . 
3.3. Evaluation methods 

To validate the performance of the proposed RED-WGAN, three 
methods (CNN3D, BM4D and PRI-NLM3D ( Manjón et al., 2012 )) 
were compared. To evaluate the performance of these methods, 
three quantitative metrics were employed. The first one is the 
peak signal-to-noise ratio (PSNR), which considers the root mean 
square error (RMSE) between the ground truth and denoised im- 
ages. The second is the structural similarity index measure (SSIM) 
( Wang et al., 2004 ), which measures the similarity between ground 
truth and denoised images. The last one is the information fidelity 
criterion (IFC) ( Hamid Rahim et al., 2005 ), which quantifies the 
mutual information between the reference and the testing images 
to evaluate the perceptual quality. 
3.4. Results 
3.4.1. Clinical results 

The average quantitative results of BM4D, PRI-NLM3D, CNN3D 
and RED-WGAN on T1w, T2w and PDw images with different noise 
levels from 1% to 15% with a step of 2% are illustrated in Tables 1–
3 . The performances on all metrics of the DL-based methods are 
significantly superior to traditional denoising algorithms, such as 
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( Isola et al., 2017 ) and image generation ( Kataoka et al., 2016 ). The 
role of the discriminative model is to determine whether a sample 
is from the generative model distribution P g or the real data distri- 
bution P r , and the generative model generates a new sample from 
the input sample and tries to make the new sample satisfy the real 
data distribution P r as much as possible. 

The training process of GANs is a minimax game with the fol- 
lowing loss function L ( D , G ) as 
min 

G max 
D L ( D, G ) = E y ∼P r [ log D ( y ) ] + E x ∼P n [ log ( 1 − D ( G ( x ) ) ) ] (3) 

To solve Eq. (3) , G and D are optimized alternatingly. 
In Arjovsky and Bottou (2017) , the authors suggested that the 

training of GAN is difficult because Eq. (3) may lead to a vanish- 
ing gradient for the generator G when the discriminator D is fixed. 
To avoid this problem, an improved variant of the GAN was pro- 
posed by Arjovsky and Bottou, called Wasserstein GAN (WGAN) 
( Arjovsky et al., 2017 ). Furthermore, Gulrajani et al. presented an 
improved version of WGAN with a gradient penalty to accelerate 
the convergence ( Gulrajani et al., 2017 ). The changes in the loss 
function are as follows: 
L WGAN ( D ) = − E y ∼P r [ D ( y ) ] + E x ∼P n [ D ( G ( x ) ) ] 

+ λE ̂ x ∼P ̂ x [ (∥∥∇ ̂ x D ( ˆ x )∥∥
2 − 1 )2 ] 

(4) 
where the last term is a gradient penalty factor, λ is a penalty co- 
efficient, P ̂ x is a distribution that uniformly samples along straight 
lines between pairs of points sampled from the real data distri- 
bution P r and the generator distribution P g . The loss function of 
generator G is formulated as: 
L WGAN ( G ) = −E x ∼P n [ D ( G ( x ) ) ] (5) 
2.3. Combined loss function 

The MSE loss function is the most common loss function for 
pixel-level transform tasks, which minimizes the pixelwise differ- 
ences between the ground truth image and the generated image. It 
can be calculated as follows: 
L MSE = 1 

whd ‖ G ( x ) − y ‖ 2 (6) 
where w, h , and d represent the dimensions of the image. Recent 
studies suggest that although MSE loss function can achieve a high 
peak signal-to-noise ratio (PSNR), it may suffer from a loss of de- 
tails, especially high-frequency details, which have a serious im- 
pact on clinical diagnostics ( Ledig et al., 2017 ). 

To efficiently handle this problem, a perceptual loss is involved 
in the proposed loss function ( Bruna et al., 2015; Gatys et al., 2015; 
Johnson et al., 2016 ). A pretrained network can be utilized to ex- 
tract the features from the ground truth and generated images. The 
difference between the features from the ground truth image and 
the generated image is treated as the perceptual similarity. Then, 
the perceptual loss function is defined as follows: 
L Perceptual = 1 

whd ‖ ∅ ( G ( x ) ) − ∅ ( y ) ‖ 2 F (7) 
where ∅ is a feature extractor, and w, h , and d represent the di- 
mensions of feature maps. In this paper, we apply the pretrained 
VGG-19 network ( Simonyan and Zisserman, 2014 ) to extract the 
features of the image. The VGG-19 network contains 19 layers: the 
first 16 layers are convolutional layers, and the subsequent 3 lay- 
ers are fully connected layers. We only use the first 16 layers as 
our feature extractor. Then, the specific perceptual loss based on 
the VGG network is employed as follows: 
L VGG = 1 

whd ‖ V GG ( G ( x ) ) − V GG ( y ) ‖ 2 F (8) 

Fig. 1. Overall architecture of our proposed RED-WGAN network. 
Then, we obtain the weighted joint loss function of generator 

G , which consists of MSE loss, VGG loss and discriminator loss. 
L RED −WGAN = λ1 L MSE + λ2 L VGG + λ3 L WGAN ( G ) (9) 
2.4. Network architectures 

The overall architecture of the proposed RED-WGAN network is 
illustrated in Fig. 1 . It consists of a generator network G , a dis- 
criminator network D , and the VGG network is used as the fea- 
ture extractor. The specific structure of the generator network G is 
demonstrated in Fig. 2 . To accelerate the training procedure and 
preserve more details, short connections and deconvolution layers 
are introduced. Furthermore, to explore the ability of the autoen- 
coder to deal with noisy samples, the convolution and deconvolu- 
tion layers are symmetrically arranged. Specifically, the generator 
G has an encoder–decoder structure composed of 8 layers: 4 con- 
volutional and 4 deconvolutional layers. Short connections link the 
corresponding convolution-deconvolutional layer pairs. Except for 
the last layer, the other layers perform a 3D convolution, a batch- 
normalization and a LeakyReLU operation in sequence, and the last 
layer only performs a 3D convolution and a LeakyReLU operation. 
In this paper, all kernels are set to 3 × 3 × 3, and the sequence of 
the number of filters used is 32, 64, 128, 256, 128, 64, 32, 1. 

The structure of the discriminator network D is illustrated in 
Fig. 3 . It has 3 convolutional layers: one with 32 filters, on with 64 
filters and one with 128 filters. The kernel sizes are set to 3 × 3 × 3 
in all the convolution layers. The last layer is a fully connected 
layer that has a single output: the discriminant result. 

We use a pretrained VGG-19 network to extract the features. 
For more details, the readers can refer to the original reference 
( Simonyan and Zisserman, 2014 ). Due to the power of transfer 
learning ( Pan and Yang, 2010 ), there is no need to retrain the net- 
work with our target MR images. 
3. Experiment 
3.1. Datasets 

To validate the performance of the proposed RED-WGAN, ex- 
tensive experiments on both clinical and simulated datasets were 
performed. 
3.1.1. Clinical data 

For the clinical experiments, the well-known IXI dataset ( http:// 
brain- development.org/ixi- dataset/ ), which is collected from 3 dif- 
ferent hospitals, was used. The detailed scanning configuration is 
given in the website mentioned above. 

Overall architecture

Generator

Discriminator
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Fig. 4. One denoised T1w example from the testing set with 15% Rician noise. (a) Noise-free image, (b) noisy image, (c) BM4D, (d) PRI-NLM3D, (e) CNN3D, (f) RED-WGAN, 
(g) residual of BM4D, (h) residual of PRI-NLM3D, (i) residual of CNN3D, (j) residual of RED-WGAN. 
BM4D and PRI-NLM3D. For T1w images, the scores of RED-WGAN 
are close to CNN3D when the noise level is less than 7%. While the 
noise level increases, RED-WGAN yields a better performance than 
the other methods. For T2w images, the results of RED-WGAN are 
slightly better than all the other methods in most noise levels. In 

Table 3 , the differences are trivial, but the results of CNN3D are 
slightly better than those of RED-WGAN when the noise level is 
less than 11%. 

Figs. 4–6 provide a visual evaluation of the different re- 
sults for T1w, T2w and PDw brain images selected from the 
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Fig. 14. Denoised result on real T1w human brain data. 

Fig. 15. Denoised result on real T1w mouse brain data. 
applications without prior knowledge about the noise level, train- 
ing the DL model with a mix of possible noise levels is one of the 
potential solutions. The performance of RED-WGAN-m is slightly 
worse than traditional methods at a low noise level (1%). The 
possible reason is that when simultaneously training with higher 
noise levels, the risk that the network may mistreat the noise as 
details from a low noise level is increased. 

It also can be observed that the model RED-WGAN-n trained 
with a single noise level of n% can efficiently cover a certain 
noise range. For example, RED-WGAN-9, which was trained with 
a 9% noise level, has better scores on the testing set with 7–
13% noise levels. This can also be seen as solid evidence for the 
generalization and robustness of our model, as most traditional 
methods also need to adjust the parameters to fit the different 
noise levels. 
3.5.2. Real MR data 

The propose of this subsection is to verify the effectiveness of 
the proposed model on real noisy clinical data. The experiments 
were conducted on two brain MR image volumes, which belong to 
a human being and a mouse, respectively. The human brain image 
was acquired on a Siemens (Erlangen, Germany) Trio Tim 3T scan- 

ner using an MP-RAGE sequence with TR = 2400 ms, TE = 2.01 ms, 
TI = 10 0 0 ms, flip angle = 8, voxel resolution = 0.8 × 0.8 × 0.8 mm 3 
and 256 × 256 × 224 voxels. The mouse brain image was acquired 
on a Bruker BioSpec 7T scanner using a 3D RARE sequence with a 
TR = 1200, an effective TE = 62.5 ms, a RARE factor = 16, a voxel 
resolution = 0.1 × 0.1 × 0.1 mm 3 and 225 × 192 × 96 voxels. Due to 
the lack of knowledge about the noise level in the real data, we ex- 
perimentally selected RED-WGAN models trained with 1% and 4% 
noise for human and mouse data, respectively. Since ground truth 
images are unavailable, the SNR was measured in a homogeneous 
region and used as the quantitative metric. The results are shown 
in Figs. 14 and 15 . In Fig. 14 , it is clear that the traditional meth- 
ods cannot eliminate all the noise in the brain, especially in the 
epencephalon and brainstem, but RED-WGAN can efficiently sup- 
press most of the noise, even near the epencephalon and brain- 
stem, which are indicated by red arrows. It is noted that a certain 
level of noises in homogeneous areas can be noticed in Fig. 14 (d). 
In Fig. 15 , the noise is much heavier than Fig. 14 . All the methods 
can remove most of the noise, but the results of BM4D and PRI- 
NLM3D look oversmoothed, and RED-WGAN obtained better visual 
effects and preserved more details. Furthermore, RED-WGAN ob- 
tained a better SNR in both cases. 

178 M. Ran, J. Hu and Y. Chen et al. / Medical Image Analysis 55 (2019) 165–180 

Fig. 14. Denoised result on real T1w human brain data. 

Fig. 15. Denoised result on real T1w mouse brain data. 
applications without prior knowledge about the noise level, train- 
ing the DL model with a mix of possible noise levels is one of the 
potential solutions. The performance of RED-WGAN-m is slightly 
worse than traditional methods at a low noise level (1%). The 
possible reason is that when simultaneously training with higher 
noise levels, the risk that the network may mistreat the noise as 
details from a low noise level is increased. 

It also can be observed that the model RED-WGAN-n trained 
with a single noise level of n% can efficiently cover a certain 
noise range. For example, RED-WGAN-9, which was trained with 
a 9% noise level, has better scores on the testing set with 7–
13% noise levels. This can also be seen as solid evidence for the 
generalization and robustness of our model, as most traditional 
methods also need to adjust the parameters to fit the different 
noise levels. 
3.5.2. Real MR data 

The propose of this subsection is to verify the effectiveness of 
the proposed model on real noisy clinical data. The experiments 
were conducted on two brain MR image volumes, which belong to 
a human being and a mouse, respectively. The human brain image 
was acquired on a Siemens (Erlangen, Germany) Trio Tim 3T scan- 

ner using an MP-RAGE sequence with TR = 2400 ms, TE = 2.01 ms, 
TI = 10 0 0 ms, flip angle = 8, voxel resolution = 0.8 × 0.8 × 0.8 mm 3 
and 256 × 256 × 224 voxels. The mouse brain image was acquired 
on a Bruker BioSpec 7T scanner using a 3D RARE sequence with a 
TR = 1200, an effective TE = 62.5 ms, a RARE factor = 16, a voxel 
resolution = 0.1 × 0.1 × 0.1 mm 3 and 225 × 192 × 96 voxels. Due to 
the lack of knowledge about the noise level in the real data, we ex- 
perimentally selected RED-WGAN models trained with 1% and 4% 
noise for human and mouse data, respectively. Since ground truth 
images are unavailable, the SNR was measured in a homogeneous 
region and used as the quantitative metric. The results are shown 
in Figs. 14 and 15 . In Fig. 14 , it is clear that the traditional meth- 
ods cannot eliminate all the noise in the brain, especially in the 
epencephalon and brainstem, but RED-WGAN can efficiently sup- 
press most of the noise, even near the epencephalon and brain- 
stem, which are indicated by red arrows. It is noted that a certain 
level of noises in homogeneous areas can be noticed in Fig. 14 (d). 
In Fig. 15 , the noise is much heavier than Fig. 14 . All the methods 
can remove most of the noise, but the results of BM4D and PRI- 
NLM3D look oversmoothed, and RED-WGAN obtained better visual 
effects and preserved more details. Furthermore, RED-WGAN ob- 
tained a better SNR in both cases. 
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0.9375× 0.9375mm in-plane resolution and 3mm slice thickness. The
datasets were acquired at a rest position and the subjects were required
to remain still for 1.5–3min for each orientation. For each subject, the
three axial, sagittal, and coronal acquisitions were interpolated onto a
0.9375× 0.9375× 0.9375mm digital grid and N4 corrected [24].

We applied both JogSSR and SMORE(3D) on single acquisitions to

compare to the multi-view super-resolution reconstruction. The multi-
view reconstruction algorithm we used for comparison is an improved
version of the algorithm described in Woo et al. [2]. This approach
takes three interpolated image volumes, aligns them using ANTs affine
registration [31] and SyN deformable registration [32], and then uses a
Markov random field image restoration algorithm (with edge

Fig. 2. T2 Flair MRI from an MS subject: Axial, sagittal, and coronal views of the acquired 0.828× 0.828× 4.4mm image, and the reconstructed volumes with
0.828× 0.828× 0.828mm digital grid through cubic b-spline interpolation, JogSSR, and SMORE(2D). In each view, we pick a path across lesions, shown as colored
arrows in the images, and plot the line profiles of the three methods in the same plot on the bottom of each view.
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resolution, resulting in a HR volume. Details can be found in [23], with
a modification that the anti-ringing filter is changed to a Fermi filter to
better mimic the behavior in scanners. SMORE(2D) uses the same
general concept as SMORE(3D), but adds a self anti-aliasing (SAA)
network trained with aliased axial slices. The aliased slices are created
by first applying the filter h(x), which in this case mimics the through-
plane slice profile, and then a downsampling/upsampling sequence that
produces aliasing at the same level as that found in the through-plane
direction. We first apply the trained SAA network on sagittal slices to
remove aliasing in the sagittal plane. We then apply the trained SSR
network on the coronal plane to both remove aliasing in the coronal
plane and improve through-plane resolution, resulting in an anti-
aliased HR volume. Details can be found in [8]. For both SMORE(3D)
and SMORE(2D), we only apply the trained networks in one orientation
instead of two (or more) as described in our previous conference papers
[8,23]. This reduces computation time from 20min to 15min for
SMORE(3D), and from 35min to 25min for SMORE(2D) on a Telsa K40
GPU, with only a minor impact on performance. Also we omit SAA
network and directly apply SSR network to the LR image to further
reduce time cost from 25min to 15min for SMORE(2D) if the ratio r
between through-plane and in-plane resolution is< 3, since the
aliasing is empirically not severe in this case.

The SAA and SSR neural networks currently used in SMORE are
both implemented using the state-of-the-art super-resolution EDSR
network [9]. In this paper, we implement patch-wise training with
randomly extracted 32× 32 patches. Training on small patches re-
stricts the effect receptive field [28] to avoid structural specificity so
that this network can better preserve pathology. It also reduces spatial
correlation of the training data, which can accelerate convergence in
theory [29]. To reduce training time, the networks are fine-tuned from
pre-trained models that were trained from arbitrary data. When ap-
plying the trained networks, we apply them to entire coronal or sagittal
slices (depending on whether it is SAA or SSR) rather than just 32× 32
patches. This is possible since EDSR is a fully convolutional network
(FCN) which allows an arbitrary input size [30].

2.2. Application to visual enhancement for MS lesions

In this experiment, we test whether super-resolved T2 FLAIR MR
images can give better visualization of white matter lesions in the brain
than the acquired images. The T2 Flair MR images were acquired from
multiple sclerosis (MS) subjects using a Philips Achieva 3 T scanner
with a 2D protocol and the following parameters:
0.828× 0.828× 4.4mm, TE=68ms, TR=11 s, TI= 2.8 s, flip
angle= 90°, turbo factor= 17, acquisition time=2m56 s. We per-
formed cubic b-spline interpolation, JogSSR [22], and SMORE(2D) on

the data using a 0.828× 0.828× 0.828mm digital grid. We show a
visual comparison on the regions of white matter lesions in axial, sa-
gittal, and coronal slices for the three methods. We also plot 1D in-
tensity profiles of the three methods across selected paths through
different lesions.

2.3. Application to visual enhancement of scarring in cardiac left
ventricular remodeling

In this experiment, we test whether super-resolved images can give
better visualization of the scarring caused by left ventricular re-
modeling after myocardial infarction than the acquired images. We
acquired two T1-weighted MR images from an infarcted pig, each with
a different through-plane resolution. One image, which serves as the HR
reference image, was acquired with resolution equal to
1.1× 1.1× 2.2mm, and then it was sinc interpolated on the scanner
(by zero padding in k-space) to 1.1× 1.1× 1.1 m. The other image was
acquired with resolution equal to 1.1× 1.1× 5mm. Both of these
images were acquired with a 3D protocol, inversion time=300ms, flip
angle= 25°, TR=5.4ms, TE= 2.5ms, and GRAPPA acceleration
factor R=2. The HR reference image has a segmented centric phase-
encoding order with 12 k-space segments per imaging window (heart
beat), while the LR subject image has 16 k-space segments.

In our experiment, we performed sinc interpolation, JogSSR, and
SMORE(3D) on the 1.1× 1.1× 5.0 mm data using a
1.1× 1.1× 1.1mm digital grid. These images were then rigidly re-
gistered to the reference image for comparison. We are interested in the
regions of thinning layer of midwall scar between the endocardial and
epicardial layers of normal myocardium and the thin layer of normal
myocardium between the scar and epicardial fat. These two regions of
interest are cropped and zoomed to show the details.

2.4. Application to multi-view reconstruction

In this experiment, we test whether a super-resolved image from a
single acquisition can give a comparable result to a multi-view super-
resolution image reconstructed from three acquisitions. MR images of
the tongue were acquired from normal speakers and subjects who had
tongue cancer surgically resected (glossectomy). Scans were performed
on a Siemens 3.0 T Tim Treo system using an eight-channel head and
neck coil. A T2-weighted Turbo Spin Echo sequence with an echo train
length of 12, TE= 62ms, and TR=2500ms was used. The field-of-
view (FOV) was 240× 240mm with a resolution of 256× 256. Each
dataset contained a sagittal, coronal, and axial stack of images con-
taining the tongue and surrounding structures. The image size for the
high-resolution MRI was 256× 256× z (z ranges from 10 to 24) with

Fig. 1. Overview of SMORE. Workflow of SMORE for MRI acquired with 3D protocols and 2D protocols, referred as SMORE(3D) and SMORE(2D). They are simplified
version of algorithms described in our previous conference papers [8,23].
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0.9375× 0.9375mm in-plane resolution and 3mm slice thickness. The
datasets were acquired at a rest position and the subjects were required
to remain still for 1.5–3min for each orientation. For each subject, the
three axial, sagittal, and coronal acquisitions were interpolated onto a
0.9375× 0.9375× 0.9375mm digital grid and N4 corrected [24].

We applied both JogSSR and SMORE(3D) on single acquisitions to

compare to the multi-view super-resolution reconstruction. The multi-
view reconstruction algorithm we used for comparison is an improved
version of the algorithm described in Woo et al. [2]. This approach
takes three interpolated image volumes, aligns them using ANTs affine
registration [31] and SyN deformable registration [32], and then uses a
Markov random field image restoration algorithm (with edge

Fig. 2. T2 Flair MRI from an MS subject: Axial, sagittal, and coronal views of the acquired 0.828× 0.828× 4.4mm image, and the reconstructed volumes with
0.828× 0.828× 0.828mm digital grid through cubic b-spline interpolation, JogSSR, and SMORE(2D). In each view, we pick a path across lesions, shown as colored
arrows in the images, and plot the line profiles of the three methods in the same plot on the bottom of each view.
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Markov random field image restoration algorithm (with edge

Fig. 2. T2 Flair MRI from an MS subject: Axial, sagittal, and coronal views of the acquired 0.828× 0.828× 4.4mm image, and the reconstructed volumes with
0.828× 0.828× 0.828mm digital grid through cubic b-spline interpolation, JogSSR, and SMORE(2D). In each view, we pick a path across lesions, shown as colored
arrows in the images, and plot the line profiles of the three methods in the same plot on the bottom of each view.

C. Zhao, et al. 0DJQHWLF�5HVRQDQFH�,PDJLQJ��������������²���

���

0.9375× 0.9375mm in-plane resolution and 3mm slice thickness. The
datasets were acquired at a rest position and the subjects were required
to remain still for 1.5–3min for each orientation. For each subject, the
three axial, sagittal, and coronal acquisitions were interpolated onto a
0.9375× 0.9375× 0.9375mm digital grid and N4 corrected [24].

We applied both JogSSR and SMORE(3D) on single acquisitions to

compare to the multi-view super-resolution reconstruction. The multi-
view reconstruction algorithm we used for comparison is an improved
version of the algorithm described in Woo et al. [2]. This approach
takes three interpolated image volumes, aligns them using ANTs affine
registration [31] and SyN deformable registration [32], and then uses a
Markov random field image restoration algorithm (with edge

Fig. 2. T2 Flair MRI from an MS subject: Axial, sagittal, and coronal views of the acquired 0.828× 0.828× 4.4mm image, and the reconstructed volumes with
0.828× 0.828× 0.828mm digital grid through cubic b-spline interpolation, JogSSR, and SMORE(2D). In each view, we pick a path across lesions, shown as colored
arrows in the images, and plot the line profiles of the three methods in the same plot on the bottom of each view.

C. Zhao, et al. 0DJQHWLF�5HVRQDQFH�,PDJLQJ��������������²���

���



Image super-resolution 35

Self super-resolution for MRI

Zhao et al., Magnetic Resonance Imaging, 2019

Fig. 5. Comparison between SMORE(2D) and multi-view reconstruction for a tongue tumor subject: Axial, Sagittal, and Coronal views of the tongue region in cubic b-
spline interpolation and SMORE(2D) results for a single coronal acquisition, and multi-view reconstructed image [2] using three acquisitions. The arrows point out
the bright looking scar tissue from a removed tumor.

Fig. 6. Coronal views of brain ventricle parcellation on an NPH subject: The volumes with digital resolution of 0.8× 0.8× 0.8mm that resolved from
0.8× 0.8× 3.856mm LR image using cubic-bspline interpolation, JogSSR, SMORE(2D), and the interpolated 0.8× 0.8× 0.9mm HR image. The patches in blue
boxes are zoomed in the second row to show details of the 4th ventricle. The last row shows the VParNet [33] parcellation results and the manual labeling for the 4th
ventricle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Coronal views of brain ventricle parcellation on an NPH subject: The volumes with digital resolution of 0.8× 0.8× 0.8mm that resolved from
0.8× 0.8× 3.856mm LR image using cubic-bspline interpolation, JogSSR, SMORE(2D), and the interpolated 0.8× 0.8× 0.9mm HR image. The patches in blue
boxes are zoomed in the second row to show details of the 4th ventricle. The last row shows the VParNet [33] parcellation results and the manual labeling for the 4th
ventricle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Interpolation SMORE HR

Thickness Interpolation SMORE HR (0.9 mm)

1.205 mm 0.969 0.9696 0.9699

1.928 mm 0.9665 0.9690

3.0125 mm 0.9602 0.9675

3.856 mm 0.9524 0.9632

4.82 mm 0.9408 0.9607

Quantitative results
Dice score (overlap between manual and automatic
segmentations)
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