

www.aramislab.fr www.clinica.run

AI4Health School 2021

Practical session DL4MI

Medical image synthesis with deep learning

Principle and applications

Ninon Burgos, with Simona Bottani, Mauricio Diaz Melo, Johann Faouzi and Elina Thibeau-Sutre Aramis Lab, Paris Brain Institute, France

Isola et al., CVPR, 2017

Medical image-to-image translation

Burgos et al., PMB, 2017; Yang et al., IEEE TMI, 2018; Qu et al., MedIA, 2020; Lee et al., PMB, 2019

Generative Deep Learning

Convolutional neural networks

CNNs for classification

MIT Introduction to Deep Learning (introtodeeplearning.com)

CNNs for classification

CNNs for many applications

CNNs for image generation

Encoder

MIT Introduction to Deep Learning (introtodeeplearning.com)

Training autoencoders

$$\mathcal{L}(x,\hat{x}) = \|x - \hat{x}\|^2$$

Autoencoders

MIT Introduction to Deep Learning (introtodeeplearning.com)

Autoencoders

MIT Introduction to Deep Learning (introtodeeplearning.com)

Generating images from scratch

MIT Introduction to Deep Learning (introtodeeplearning.com)

MIT Introduction to Deep Learning (introtodeeplearning.com)

Image translation with conditional GANs

Image translation with conditional GANs

Image translation with conditional GANs

Dealing with unpaired data

Paired data

Unpaired data

Generative adversarial networks

Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, CVPR 2017

Generative adversarial networks

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017

Application examples

Attenuation correction for PET/MR scanners

PET without PET with attenuation correction attenuation correction

Solution

▷ Synthesise CT from MR images

MR-based synthetic CT generation using a deep CNN method

Han, Medical Physics, 2017

Medical Image Synthesis with Context-Aware GANs

Deep MR to CT Synthesis using Unpaired Data

Paired data

Unpaired data

Deep MR to CT Synthesis using Unpaired Data

Magnetic resonance imaging (MRI)

Noise-free MRI

Noisy MRI

Image denoising

Denoising of 3D MRI using a residual encoder-decoder Wasserstein GAN Generator

Overall architecture

Conv3D BatchNorm3D DeConv3D LeakyReLU Encoder

Discriminator

Image denoising

Denoising of 3D MRI using a residual encoder-decoder Wasserstein GAN

Noise-free MRI

Noisy MRI

Denoised MRI

Image denoising

Denoising of 3D MRI using a residual encoder-decoder Wasserstein GAN

Denoised MRI

2D MRI

Zhao et al., Magnetic Resonance Imaging, 2019

Self super-resolution for MRI

Zhao et al., Magnetic Resonance Imaging, 2019

Self super-resolution for MRI

Quantitative results

Dice score (overlap between manual and automatic segmentations)

Thickness	Interpolation	SMORE	HR (0.9 mm)
1.205 mm	0.969	0.9696	0.9699
1.928 mm	0.9665	0.9690	
3.0125 mm	0.9602	0.9675	
3.856 mm	0.9524	0.9632	
4.82 mm	0.9408	0.9607	

Zhao et al., Magnetic Resonance Imaging, 2019

DeepHarmony: A deep learning approach to contrast harmonization across scanner changes

Dewey et al., Magnetic Resonance Imaging, 2019

DeepHarmony: A deep learning approach to contrast harmonization across scanner changes

Acquired

DeepHarmony

Dewey et al., Magnetic Resonance Imaging, 2019

www.aramislab.fr www.clinica.run

AI4Health School 2021

Practical session DL4MI

Medical image synthesis with deep learning

Principle and applications

https://aramislab.paris.inria.fr/workshops/DL4MI