# External resources
## Alzheimer’s disease
### Clinical context
* [Alzheimer's association](https://www.alz.org/alzheimer_s_dementia)
* [Advances in Alzheimer's Disease: Imaging and Biomarker Research](https://www.youtube.com/watch?v=7J3-59mRcxk) (Video by Dr Philip Scheltens)
* [Imaging biomarkers in Alzheimer's disease](http://www.sciencedirect.com/science/article/pii/B978012816176000020X) (Book chapter by Dr Carole Sudre et al.)
### Public datasets
* [Alzheimer's Disease Neuroimaging Initiative](http://adni.loni.usc.edu)
* [Australian Imaging Biomarkers and Lifestyle](https://aibl.csiro.au/adni/index.html)
* [Open Access Series of Imaging Studies](https://www.oasis-brains.org)
## Deep learning
### Courses
* [Introduction to Deep Learning](http://introtodeeplearning.com/) by MIT
* [Deep Learning](https://www.deeplearning.ai/) by Andrew Ng
* [Convolutional Neural Networks for Visual Recognition](http://cs231n.stanford.edu/) by Stanford University
### Books
* [Deep Learning](https://www.deeplearningbook.org) by Ian Goodfellow, Yoshua Bengio and Aaron Courville
* [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python) by François Chollet
* [Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow](https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/) by Aurélien Géron
### Convolutional neural networks
* [AlexNet](https://dl.acm.org/doi/10.1145/3065386)
* [VGGNet](https://arxiv.org/pdf/1409.1556.pdf)
* [Inception](https://arxiv.org/pdf/1409.4842.pdf)
* [ResNet](https://arxiv.org/pdf/1512.03385.pdf)
* [Xception](https://arxiv.org/pdf/1610.02357.pdf)
### Generative models
* [Variational Autoencoder](https://arxiv.org/pdf/1312.6114.pdf)
* [Generative Adversarial Network](https://arxiv.org/pdf/1406.2661.pdf)
* [Conditional Generative Adversarial Network](https://arxiv.org/pdf/1411.1784.pdf)
* [Cycle Generative Adversarial Network](https://arxiv.org/pdf/1703.10593.pdf)
### Recurrent neural networks
* [Vanilla Recurrent Neural Network](https://www.nature.com/articles/323533a0)
* [Long Short-Term Memory](https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735?journalCode=neco)
* [Gated Recurrent Unit](https://arxiv.org/pdf/1406.1078.pdf)
## Software
### Neuroimaging
* [FreeSurfer](http://freesurfer.net): An open source software suite for processing and analyzing (human) brain MRI images
* [Statistical Parametric Mapping](https://www.fil.ion.ucl.ac.uk/spm/): Analysis of Brain Imaging Data Sequences
* [FMRIB Software Library](https://surfer.nmr.mgh.harvard.edu/fswiki/FSL): A fMRI, MRI and DTI analysis software]
* [Nipype](https://nipype.readthedocs.io): Neuroimaging in Python - Pipelines and Interfaces
* [BIDS Apps](https://bids-apps.neuroimaging.io/apps/): Portable neuroimaging pipelines that understand BIDS datasets
* [Clinica](http://www.clinica.run): A software platform for clinical neuroimaging studies
### Data analysis
* [PyTorch](https://pytorch.org): An Imperative Style, High-Performance Deep Learning Library
* [TensorFlow](https://www.tensorflow.org): Large-Scale Machine Learning on Heterogeneous Systems
* [scikit-learn](https://scikit-learn.org): Machine Learning in Python
* [Clinica](http://www.clinica.run): A software platform for clinical neuroimaging studies
* [ClinicaDL](https://clinicadl.readthedocs.io): A framework for the reproducible classification of Alzheimer's disease using deep learning
# Deep learning for computer-aided diagnosis from images
# Medical image synthesis with deep learning